
Modeling in Chemical

Engineering with MATLAB

Dr. Hong-ming Ku
Chemical Engineering Practice School

King Mongkut’s University of Technology Thonburi
1

CHE656 Course Slides
(10th Edition, 2020)

Introduction

2

What Is MATLAB?
 MATLAB = Matrix Laboratory

 by The MathWorks, Inc. (www.mathworks.com)

 Originally developed for easy matrix manipulation

 Latest: Version R2020a (Version 9.8)

 Ours: Version R2020a with KMUTT license

 Software program for numerical computations
 Simple arithmetic and function calculations
 Vectors and matrix manipulations

3

What Is MATLAB? (Cont’d)
 Equations solving

1. Linear algebraic equations
2. Nonlinear algebraic equations
3. Ordinary differential equations (ODEs)
4. Partial differential equations (PDEs)

 Programming

 Plotting

4

Getting Started

 On PCs, click on the MATLAB icon in Desktop

 Terminating a MATLAB session:

1. Click on the “Close Window” button

2. Select Exit MATLAB from the File pulldown menu

3. Press Cntrl+Q on the command line

4. Type exit or quit at the command line

5. Cntrl+C will interrupt a MATLAB task but will not
exit the program

5

Getting Started (Cont’d)

6

Command
HistoryResponse from

MATLABMATLAB promptand command line

Variables defined
and their values

Current Working Directory

Getting Help in MATLAB

 Very extensive set of help at the command line:
 demo Opens Help browser to MATLAB examples
 help topic Display on-line help on a topic (with

syntax and examples) at command line
 Type help to view all topics

doc Online help and comprehensive
helpwin hypertext documentation and
help trouble-shooting

7

Lookfor vs. Help

 The lookfor command searches for functions based on a

keyword in the first line of help text

 For example, MATLAB does not have a function named

“inverse”:
>> help inverse
inverse.m not found. => response from MATLAB
>> lookfor inverse => will find many matches

8

Simple Arithmetic Capabilities
>> clc % Clear the screen

>> clear % Clear all the variables in session

>> 2 + 3 % Simple addition
ans =
 5

>> 2*3 % Simple multiplication
ans =

 6
9

Simple Arithmetic Capabilities (Cont’d)

>> 3 / 6 % Simple division
>> 2^3 % Exponentiation of power
>> 10 / (3+2) % More complex expression
ans =
 2

Arithmetic Operators:

+ Addition / Division
- Subtraction \ Left division
* Multiplication ^ Power
() Specify evaluation order by the degree of nesting 10

Other Tidbits
>> 6 / 3 , 3 \ 6 % Use , to execute more than 1 operation

ans =
 2
ans =
 2

The semicolon ; will suppress the output but save the result

>> 2+3 ; %Will produce no output but save the result in ans
>> ans % Retrieve the result
ans =
 5

11

Other Tidbits (Cont’d)
 Use up-arrow to recall previously entered commands

 A statement can be continued onto the next line with

 3 or more periods followed by a return

>> 2 + 3 … % Use 3 periods to continue the next line

+ 10

ans =

 15

12

Input and Output Format for Numbers

 All computations in MATLAB are done in double
precision (16 digits)

 Uses conventional decimal notation

 Scientific notation uses the letter e to specify a power-
of-ten scale factor

 Imaginary numbers use either i or j as a suffix

13

Input and Output Format for Numbers

 Examples of legal numbers are:
3 -99 0.0001
9.6397238 1.60210e-20 6.02252e25
1i -3.14159j 3e5i

 Format command is used to switch between different

display formats.

14

Display Output for Numbers with Format

>> format % Default. Same as “format short”

>> format short % Scaled fixed point format with 5 digits

>> format long % Scaled fixed point format with 15 digits

>> format shorte % Floating point format with 5 digits

>> format longe % Floating point format with 15 digits

>> format shorteng % Engineering format that has at least 5 digits and a power
that is a multiple of three

>> format longeng % Engineering format that has exactly 16 significant digits
and a power that is a multiple of three

>> format compact % Suppresses extra line-feeds

>> format loose % Puts the extra line-fees back in 15

Display Output for Numbers with Format

>> pi % Display value of pi using default format
ans =
 3.1416

>> format long, pi % Long, fixed format pi
ans =
 3.14159265358979
>> format shorte, pi % Short, scientific notation for pi
ans =
 3.1416e+00
Use fprintf command to write formatted data to file or screen

Syntax: fprintf (fid, format, A, ……)
16

The fprintf Command
Syntax: fprintf (fid, format, A, ……)

where fid = output filename; if blank, output is screen
format = format control of data
A = variable name (e.g. vector, matrix, etc.)

>> A = pi;
>> fprintf (‘%10.6f’, A) % print value of pi in fixed point
 % format with a maximum of 10
 % characters and 6 decimal places
3.141593

17

The fprintf Command (Cont’d)
>> A = pi;, B =2*pi;
>> fprintf (‘%10.6f’, A, B)
3.141593 6.283185

>> fprintf (‘%10.6f\n’, A, B) % \n forces a new line in output
3.141593
6.283185

Type ‘help fprintf’ to view more information about the the command and
how to write to an output file.
Another useful command to display output is disp(x), where x could be an
array or a string enclosed in ‘ ‘. The command displays the array without
printing the array name.

18

Predefined Variables

ans The most recent answer

i, j Imaginary unit

pi The value of pi (3.141592653)

Inf Infinity

NaN Not-a-Number (i.e. 0/0 or Infinity/Infinity)

19

Built-in Mathematical Functions
 MATLAB has many built-in mathematical functions

 Type “help elfun” and “help specfun” for a list of
functions

 Some common ones are:
abs(x) Gives the absolute value of x
sqrt(x) Gives the square root of x
exp(x) Exponential of x
log(x) Natural logarithm of x
log10(x) Logarithm to the base 10 of x

20

Built-in Mathematical Functions (Cont’d)

sin(x) Sine of x, for x in radians
asin(x) Arcsin(x)
csc(x) Produces 1/sin(x)
round(x) Gives the integer closest to x
real(x) Gives the real part of a complex number

>> x = exp(1) % Numerical value of e
x =
 2.7183

21

An Example
%
% Here is a simple sequence of expressions to compute
% the volume of a cylinder, given its radius and length.
%
>> radius = 2; % radius of cylinder
>> length = 4; % length of cylinder
>> volume = pi*radius^2*length % volume of cylinder
volume =
 50.2655

22

Writing a MATLAB Script File

 A script is an external text file containing a sequence
of MATLAB statements.

 Has the file extension .m

 Very useful for running MATLAB non-interactively by
executing many MATLAB statements with one Enter
keystroke by typing the script filename.

 The first character of the file name must be an alphabet, but
the file name may contain numerals.

 Must make sure the file name does not coincide with built-in
MATLAB function names, e.g. sum, sin, mean.

Writing a MATLAB Script File (Cont’d)

 Two simple ways to create a MATLAB script file:
1. Use a text editor in Windows or use the built-in Editor in

MATLAB by choosing New Script in the ribbon.

2. Use MATLAB diary command to record an interactive
session.
>> diary filename
>> (some MATLAB commands)
>> (some MATLAB output)
>> diary off
Then edit the file to delete MATLAB output, including
incorrect commands and any error messages. Save the file
again with the extension .m.

Example of a Script File

 Create a script file named “Volume.m”
clear
clc
radius = 2;
length = 4;
volume = pi*radius^2*length;
fprintf (‘The volume of the cylinder = %4.2f \n’, volume)

 Notice that the file name of a script is case-sensitive.
 Also, you are not allowed to use the same name for a

variable in the script and the script file name.

Vector and Matrix
Manipulations

26

Matrices and Vectors
Vectors and One-Dimensional Arrays

1. Row Vector
>> a = [1 3 9 25 1] % Syntax for a row vector with
 % elements separated by a space
>> a = [1, 3, 9, 25, 1] % Syntax for a row vector with

 % elements separated by a comma
a =
 1 3 9 25 1

27

Matrices and Vectors (Cont’d)
2. Column Vector
>> b = [1; 3; 2; 5] % Syntax for a column vector with
 % elements separated by a semicolon
b =
 1

3
2
5

28

Some Vector Operations/Manipulations

>> a(2) % Determine the value of the 2nd element of the vector

ans =
 3

>> length(a) % Determine the number of elements in vector

ans =
 5

>> a(7) = 49 % Add an additional element to the vector a
a =
 1 3 9 25 1 0 49 29

Some Vector Operations/Manipulations
>> a(6) = 16 % Change the 6th element of the vector
a =
 1 3 9 25 1 16 49
Many of the functions introduced can be applied to a vector
>> sqrt(a) % Determine the square root of each element
ans =
 1.0000 1.7321 3.0000 5.0000 1.0000
4.0000 7.0000
Other useful functions are:
min(a), max(a), mean(a), median(a)

30

Some Vector Operations/Manipulations

>> c = [2 4 5 3]’ % c is the transpose of the row vector
c =
 2
 4
 5
 3
>> 3*b – c % array operations can be performed on each element
ans =
 1
 5
 1
 12

31

Some Vector Operations/Manipulations
Arrays can be combined
>> [c ; b] % Join two column vectors to form a new one
ans =
 2
 4
 5
 3
 1
 3
 2
 5

32

Some Vector Operations/Manipulations
When division, exponentiation, or other operators are involved,
the syntax is to put a period ‘.’ before the operator without any
spacing:
>> a./2 % Divide each array element by 2
ans =
 0.5000 1.5000 4.5000 12.5000 0.5000
8.0000 24.5000

>> b’.*c’ % Form product of the individual elements,
 i.e. [b1c1, b2c2, …, bncn]

ans =
 2 12 10 15 33

Some Vector Operations/Manipulations

>> (b’.*c’).^2 % Another example of exponentiation and .
ans =

 4 144 100 225

Vector inner and outer products:

>> c’*b % Form inner product of 2 vectors  a scalar
ans =
 39

34

Some Vector Operations/Manipulations

>> b*c’ % Form the outer product of 2 vectors  a matrix
ans =

 2 4 5 3
6 12 15 9
4 8 10 6

 10 20 25 15

Matrices:

Some basic conventions:

1. Separate the element of a row with a blanks or commas
35

Matrices (Cont’d)
2. Use semicolons ; to indicate the end of each row

3. Surround the entire list of elements with square brackets, []

>> A = [1 2 3; 5 7 4] % Entering a 23 matrix

A =
1 2 3
5 7 4

>> A(2,1) % Access element of second row, first column

ans =
 5

36

Matrices (Cont’d)

Consider a larger matrix:

>> B = [2 3 1 5 7; 3 5 1 6 7; 8 3 2 1 4; 5 7 10 3 4]
B =
 2 3 1 5 7

3 5 1 6 7
8 3 2 1 4
5 7 10 3 4

Sub-matrices can be extracted from B using the colon operator
The syntax is: (start_row:end_row, start_column:end_column)

37

Matrices (Cont’d)
>> B_submatrix = B(2:3, 2:4) % Extract a 23 sub-matrix

B_submatrix =
 5 1 6

3 2 1

>> A(:, 3) = [] % Delete the third column of matrix A
A =

1 2
5 7

>> A(:, 3) = [3; 4] % Add another column to A
A =

1 2 3
5 7 4 38

Matrices (Cont’d)
Some useful functions for manipulating matrices:

diag(A) - Produces the diagonal of matrix A
inv(A) - Finds the inverse of matrix A
eig(A) - Computes the eigenvalues of matrix A
eye(n) - Generates an n  n identity matrix
zeros(n, m) - Generates an n  m matrix of zeros
ones(n, m) - Generates an n  m matrix of ones

Matrix manipulations can be used to solve a system of
algebraic equations!!!

39

Example of the Use of Matrices
To solve a Stoichiometric Balance Problem:

x1CH4 + x2O2 ---> x3CO2 + x4H2O (combustion of methane)

The balance equations are:

x1 = x3 , 4x1 = 2x4 , 2x2 = 2x3 + x4

3 equations but 4 unknowns ==> set x1 = 1

40

Example of the Use of Matrices (Cont’d)

The matrix form is:

1 0 -1 0 x1 0
4 0 0 -2 x2 0
0 2 -2 -1 x3 = 0
1 0 0 0 x4 1

The solution from MATLAB is:

 CH4 + 2O2 ---> CO2 + 2H2O

41

Solving Nonlinear
Algebraic Equations

42

Solving Nonlinear Equations

 There are 3 important MATLAB functions for solving
nonlinear equations: f(x) = 0

1. roots  special function to solve for polynomial roots

2. solve generalized symbolic solver for roots of a set
 of nonlinear equations

3. fsolve  generalized numerical solver for roots of a set
 of nonlinear equations

43

Syntax of Roots Function

 Syntax of roots is:

ROOTS(C) computes the roots of the polynomial whose

coefficients are the elements of the vector C.

If C has N+1 components, the polynomial is C(1)*X^N +
C(2)*X^(N-1) + … + C(N)*X + C(N+1).

44

Example of Using Roots

Solve the following polynomial equation:
3x4 + 2x3 + x2 + 4x - 6 = 0

>> c = [3 2 1 4 -6];
>> roots(c)
ans =
 -1.5476
 0.0435 + 1.2750i
 0.0435 - 1.2750i
 0.7940

45

Syntax of the Function Solve

 The solve function can be used to solve nonlinear
 algebraic equations either symbolically or numerically if
 no analytical solution is available.

The most widely used syntax is (see help too):

solve(eqn1, eqn2, …, eqnN)

solve(eqn1, eqn2, …, eqnN, var1, var2, …, varN)

46

Some Examples of Using Solve
>> syms a b c x >> solve (a*x^2+b*x+c==0, x) % Produce an analytical

 solution
ans =
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

>> syms x
>> solve(x-cos(x)==0) % Produce a numerical result, or
>> solve(x==cos(x))

ans =

0.73908513321516064165531208767387
47

More Examples of Using Solve
Consider the following set of nonlinear equations:

x2 + x - y2 = 1 and y - sin(x2) = 0
>> syms x y
>> xy = solve (x^2+x-y^2-1==0, y – sin(x^2)==0)
xy = [x y] = solve(…..)

struct with fields: x = x: [1×1 sym] 0.909085…y: [1×1 sym]
>> xy.x y =
ans = 0.735521…
0.90908536662905988691187687185816
>> xy.y
ans =
0.73552157044815211836599760477997

48

Using the Double Command
 DOUBLE(X) returns the double precision value for X. If X is
 already a double precision array, DOUBLE has no effect.
 DOUBLE is very useful in converting symbolic numbers into

double-precision numbers.
>> format short % Combine commands: disp + double
>> syms x disp(double(xy.x))
>> z = solve(3*x^2-4*x-10==0) 0.9091
z = disp(double(xy.y))
2/3 - 34^(1/2)/3 0.7355
34^(1/2)/3 + 2/3

>> double(z) % or if using [x y] = solve(…..)
ans = double(x)

-1.2770 double(y)
 2.6103 49

Specifying equations outside Solve

 Another way to use Solve? First just one unknown:
>> a = 4;
>> b = a/2;
>> syms x % define a symbolic variable
>> F = a*x-b*cos(x);
>> answer = solve(F);
>> disp(double(answer))

0.4502
50

Using Parameters in Solve Function

 Now solve for 2 unknowns from 2 nonlinear equations:
% Solve a*y-cos(z)=0 and y+b*log(z) = 0
>> syms y z
>> F1 = a*y-cos(z);
>> F2 = y+b*log(z);
>> yz = solve(F1, F2);
>> disp(double(yz.y)), disp(double(yz.z))
 0.1499

0.9278
51

Syntax of The Function fsolve

 The fsolve function solves a system of nonlinear
equations of several variables.

 The most widely used syntax is (see help too):
x = fsolve(fun, x0)
where

fun = an M-file function containing the system of
nonlinear equations

x0 = the initial guesses of the variables

52

Example of Using fsolve

 Solve: 2x1 - x2 - exp(-x1) = 0 and -x1 + 2x2 - exp(-x2) = 0
starting at x1 = -5 and x2 = -5

 First, write an M-file that computes F, the values of the
equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1)); -x(1) + 2*x(2) - exp(-x(2))];
>> x0 = [-5 -5];
>> x = fsolve(@myfun, x0)
x =

0.5671 0.5671
53

Solving Ordinary
Differential Equations

54

Solving ODEs in MATLAB

 The most widely used functions in MATLAB to solve a

 system of 1st-order ODEs are: ODE23 and ODE45

dy/dt = f(t, y) s.t. y(0) = a

- Based on the Runge-Kutta numerical method

- ODE23 is low-order while ODE45 is medium-order

- The higher the order, the more accurate the numerical
 algorithm

55

Solving ODEs in MATLAB (Cont’d)

 A function is written for the ODEs as an M-file.

Example: Solve the following ODEs

dy1/dt = 2y1 – 0.001y1y2

dy2/dt = -10y2 + 0.002y1y2

s.t. y1(0) = 5000
 y2(0) = 100

56

Solving ODEs in MATLAB (Cont’d)

 The syntax of ODE23 and ODE45 is:
[t, y] = ode23(odefun, tspan, y0)

where odefun is the name of the M-file containing the ODE
functions; tspan is the length of simulation; y0 is the initial condition
Create an M-file called ‘fxy.m’, which contains the following code:

function fy = ode(t, y)
fy = zeros(2,1); % Initialize fy as 2  1 matrix to zeros
fy(1) = 2*y(1)-0.001*y(1)*y(2);
fy(2) = -10*y(2)+0.002*y(1)*y(2);

57

Solving ODEs in MATLAB (Cont’d)

The solution of the ODEs can now be obtained by entering the

following MATLAB commands, or put them into a script file:

>> simtime = 5; % Length of simulation
>> inity = [5000, 100]; % Initial values at t=0
>> [t, y] = ode23(‘fxy’, simtime, inity) % Solve the ODEs
>> plot(t,y);
>> xlabel(‘time’)
>> ylabel(‘Values of y1 and y2’)
>> legend(‘y1’, ‘y2’)

58

Solving ODEs in MATLAB (Cont’d)

59

Plotting in MATLAB
MATLAB has extensive facilities for displaying vectors and
matrices as graph, as well as annotating and printing these
graphs.

>> x = [0 1 2 3 4 5 6 7 8 9 10]; % Setting the x values
>> y = x.^2; % y = x^2
>> plot(x,y) % Plot of a quadratic
>> title(‘Graph of a Quadratic’) % Put in a title for the graph
>> xlabel(‘Values of x’) % Label the x-axis
>> ylabel(‘y = x^2’) % Label the y-axis
>> legend(‘y’) % Put in a legend for multiple lines

60

Solving Higher-Order ODEs
 For higher-order ODEs (e.g. 2nd-order, 3rd-order, etc.), must

reduce them to a system of 1st-order ODEs.

 There are 2 kinds of higher-order ODE problems:

– Initial-value problems (IVPs)

– Boundary-value problems (BVPs)

y + 3y - xy = sin(x), y(0) = 0, y(0) = 1 => IVP
y - xy + y = exp(-x), y(0) = 0, y(1) = 2 => BVP
y + y + 3y - y = 0, y(0) = 0, y(0) = 1, y(2) = 5 => BVP

61

Reducing Higher-Order ODEs
 Consider the 2nd order ODE:

d2y/dt2 = 3 dy/dt + 6 y – cos(t), y(0) = 0, y(0) = 1

The ODE can be converted into a pair of 1st-order ODEs:

Define x = dy/dt so that

dx/dt = 3 x + 6 y – cos(t) (1)

dy/dt = x (2)

subject to x(0) = 0, y(0) = 1

62

Solving Boundary-Value Problems
 Shooting Method - Trial and Error
Consider the following 2nd-order ODE:

d2y/dt2 – (1 – t/5) y = t, y(1) = 2, y(3) = -1
 y

 3 Slope at t = 1 is unknown

 t

 -1
1 2 3 4

63

Shooting Method (Cont’d)
 Based on the mechanics of an artillery problem

 Solve the ODE as an IVP by guessing the slope y(1) to get y(3).

- If y(3) > -1, then the guess is too high. Guess a lower value for y.

- If y(3) < -1, then the guess is too low. Guess a higher value for y.
- After 2 trials, linearly interpolate or extrapolate for a third trial.

64

Ha, ha, you
missed!

I won’t after
2 trials

Shooting Method (Cont’d)
 The formula for linear interpolation/extrapolation is:

y(1) = G1 + G2 – G1 (D – R1)
 R2 – R1

where G1 = first guess at initial slope
G2 = second guess at initial slope
R1 = first result at endpoint (using G1)
R2 = second result at endpoint (using G2)
D = desired value at the endpoint

Note: The third trial always gives the correct results if the ODE is
 linear => An ODE is linear if the coefficients of each derivative term
 and the forcing function are not functions of y.

65

Shooting Method in MATLAB

 First reduce the 2nd-order ODE into a pair of 1st-order ODEs:
dy/dt = x and dx/dt – (1- t/5) y = t, y(1) = 2, y(3) = -1

 MATLAB m-file: fshoot.m

function fy = ode(t, y)
fy = zeros(2,1);
fy(1) = y(2);
fy(2) = (1-t/5)*y(1) + t;

66

Shooting Method in MATLAB (Cont’d)
 First trial => guess y(1) = x(1) = -1.5

clc
clear
simtime = [1:0.2:3];
inity = [2, -1.5];
[t, y] = ode45(‘fshoot’, simtime, inity);

2.0000 -1.5000
 1.7514 -0.9886
 1.6043 -0.4814
 1.5597 0.0389
 1.6218 0.5876
 1.7976 1.1783
 2.0967 1.8227
 2.5309 2.5310
 3.1139 3.3116
 3.8608 4.1706
 4.7876 5.1119

67

Run from t = 1 to t = 3 with t = 0.2

y x or y

y(t=3) which is > -1.0 wanted
so y(1) is too large

Shooting Method in MATLAB (Cont’d)

 Second trial => guess y(1) = x(1) = -3.0
clc
clear
simtime = [1:0.2:3];
inity = [2, -3.0];
[t, y] = ode45(‘fshoot’, simtime, inity);

2.0000 -3.0000 1.4498 -2.5118 0.9921 -2.0719 0.6192 -1.65980.3275 -1.2580 0.1163 -0.8512 -0.0118 -0.4259 -0.0520 0.0299 0.0029 0.5266 0.1620 1.0732 0.4360 1.6773 68

Run from t = 1 to t = 3 with t = 0.2

y x or y

y(t=3) is > -1.0
so y(1) is still too large

The Complete MATLAB File
% Shooting Method to solve a 2nd-order ODE
clc
clear Output:
% first trial
simtime = [1:0.2:3]; 2.0000 -3.4950
g1 = -1.5; 1.3503 -3.0145
inity = [2, g1]; 0.7900 -2.5967
[t, y] = ode45[‘fshoot’, simtime, inity) 0.3088 -2.2204
r1 = y(11,1); -0.0997 -1.8671
% second trial -0.4385 -1.5209
g2 = -3.0; -0.7076 -1.1679
inity = [2, g2]; -0.9043 -0.7955
[t, y] = ode45(‘fshoot’, simtime, inity) -1.0237 -0.3925
r2 = y(11,1); -1.0586 0.0511
% third trial and the solution -1.0000 0.5439
g3 = g1 + (g2-g1)/(r2-r1)*(-1-r1);
inity = [2, g3];
[t, y] = ode45(‘fshoot’, simtime, inity)

69

y(t=3)

Programming
in

MATLAB

70

Programming in MATLAB

 MATLAB is both a powerful programming language as
well as an interactive computational environment

 Files that contain code in the MATLAB language are
called M-files (file names must end with the extension ‘.m’)

 There are 2 kinds of M-files:
– Scripts, a simple text file where you can place MATLAB

commands.
– Functions, which can accept input arguments and return output

arguments

71

The IF Condition Statement
 The IF statement evaluates a logical expression and
executes a group of statements when the expression is true.
The general form of the IF statement is
 IF expression

statements
 ELSEIF expression

statements
 ELSE

statements
END

The ELSEIF and ELSE parts are optional. The valid operators
 in the expression are = =, <, < =, >, > =, and ~=.

72

Example of IF Condition Statements

Given a positive integer number, determine if the number
 is divisible by 5.

clc
clear
number = input(‘Please enter a positive integer number: ‘)
if number < 0

 fprintf (‘Sorry, %5i is not a positive number \n’, number)
elseif round(number) - number ~= 0

 fprintf (‘Sorry, %10.5f is not an integer number \n’, number)
elseif rem(number, 5) == 0

 fprintf (‘%5i is divisible by 5 \n’, number)
else

 fprintf (‘%5i is not divisible by 5 \n’, number)
 remainder = rem(number,5);
 fprintf (‘%5i is the remainder \n’, remainder)

end
73

Returns the remainder
if not divisible by 5

The m-file is called
“ifthenelse”

Example of IF Statements (Cont’d)

In MATLAB, type: ifthenelse
Please enter a positive integer number: -25
Sorry, -25 is not a positive number
>>
Please enter a positive integer number: 15.23
Sorry, 15.23000 is not an integer number
>>
Please enter a positive integer number: 80
 80 is divisible by 5
>>
Please enter a positive integer number: 34
 34 is not divisible by 5
 4 is the remainder
>>

74

The FOR Statement

 The FOR statement repeats a group of statements a
fixed, predetermined number of times.

The general form of the FOR statement is
 FOR variable = expr

statements
END

where expr is often of the form X:Y

75

Example of FOR Loop Statements
Given a positive integer number n, calculate the sum of (1+2+3+…+n)
clc
clear
number = input('Please enter a positive integer number: ‘)
if number < 0

fprintf (‘Sorry, %5i is not a positive number \n’, number)
else
 sum = 0;
 for i = 1:number

sum = sum + i;
 end
 fprintf (‘The sum is %8i \n’, sum)
end

76

The m-file is called
“forloop”

In MATLAB, type: forloop
Please enter a positive integer number: 100
The sum is 5050
>>

The WHILE and BREAK Statements
 The WHILE loop repeats a group of statements an
 indefinite number of times, under control of a logical
 condition.
The general form of the WHILE statement is
 WHILE expression

statements
END

 The BREAK statement lets you exit early from a FOR or
WHILE loop. This prevents MATLAB from going into an
infinite loop.

77

Example of WHILE Statements
The Hi-Lo game:
Objective: Try to correctly guess an integer between 0 and 100

 generated by the computer in as few trials as possible.

clc
clear
myinteger = round(100*rand);
flag = 0;
while flag ==0

fprintf ('\n')
 guess = input(‘Please guess an integer between 0 and 100 I have in mind: ‘);

78

The m-file is called
“whileloop”

Example of WHILE Statements (Cont’d)

if guess == myinteger
 flag = 1;
 fprintf ('\n')
 fprintf (‘You guessed right!!!\n’)
 fprintf (‘My number is %3i \n’, myinteger)
 elseif guess < myinteger
 fprintf (‘Your number is too low. Please guess again\n’)
 else
 fprintf (‘Your number is too high. Please guess again\n’)
 end
end

79

Example of WHILE Statements (Cont’d)
Please guess an integer between 0 and 100 I have in mind: 50
Your number is too low. Please guess again

Please guess an integer between 0 and 100 I have in mind: 75
Your number is too low. Please guess again

Please guess an integer between 0 and 100 I have in mind: 88
Your number is too high. Please guess again

Please guess an integer between 0 and 100 I have in mind: 82
Your number is too high. Please guess again

Please guess an integer between 0 and 100 I have in mind: 79
Your number is too low. Please guess again

Please guess an integer between 0 and 100 I have in mind: 81

You guessed right!!!
My number is 81
>>

80

Workshops

81

Workshop 1: Basic Calculations

Use MATLAB to carry out the following calculations:

(a) Solve the equation: 2x2 – 5x – 20 = 0, using the quadratic
formula. Report your answers in 6 decimal places.

(b) What is the product of the two roots of the quadratic equation:
4x2 + 3x + 13 = 0. Report your answer in 4 decimal places.

(c) Compute the distance between two points, namely (2, -4, 9)
and (-3, 1, -7), given in the Cartesian coordinates.

(d) Convert the Cartesian coordinates (4, 15) into the polar
coordinates (r, ). Report your answers in 2 decimal places
and show  in both degree and radian.

Workshop 1: Basic Calculations (Cont’d)
Use MATLAB to carry out the following calculations:
(e) A quick search on the Internet shows that the vapor pressure of

acetone is given by:

log10 (PVAP) = 7.2316 – 1277.03
T + 237.23

Verify the accuracy of this vapor pressure at T = 25 C by
comparing it (in terms of relative % error with 5 decimal
places) with the following vapor pressure equation reported by
Ambrose, Sprake, et al. (1974):

log10 (PVAP) = 4.42448 – 1312.253
T – 32.445

T in Kelvin and P in bar

T in C and P in mmHg

Workshop 2: Matrix Manipulations
(a) Consider the following arrays:

1 4 2
A = 2 4 100 B = ln(A)

7 9 7
3  42

Use MATLAB to do the following (use “format short”):
- Select just the second row of B.
- Determine the sum of the second row of B.
- Multiply the second column of B and the first column of A (element-by-element)
- Determine the maximum value in the vector resulting from element-by-element

multiplication of the second column of B with the first column of A.
- Determine the sum of the first row of A divided element-by-element by the first

three elements of the third column of B.
84

(b) Use MATLAB to determine the stoichiometric ratios of molecular
species in the following reaction. You must find the lowest integer
number for each stoichiometric coefficient.

a HIO3 + b FeI2 + c HCl  d FeCl3 + e ICl + f H2O

where HIO3 = Iodic Acid, FeI2 = Ferrous Iodide,
FeCl3 = Ferric Chloride, and ICl = Idodine Monochloride

Answers:

a = ______ b = ______ c = ______ d = ______
e = ______ f = ______

Workshop 2 (Cont’d) Workshop 3: Molar Volume and Z from Redlich-
Kwong-Soave Equation of State

86

The Redlich-Kwong-Soave equation of state contains 2 empirical
parameters a and b, and is given by:

 P = RT – a where
 V – b V(V + b)

 a = 0.42747[R2 TC
2/PC]α(T)

b = 0.08664[R TC/PC]

α(T) = [1 + m(1 – Tr
1/2)]2 and Tr =T/TC

 m = 0.480 + 1.57w – 0.176w2

 w = –1.0 – log10 [PVAP(Tr = 0.7)/PC] = Pitzer acentric factor

Workshop 3: Molar Volume and Z from Redlich-
Kwong-Soave Equation of State

87

The variables are defined by:
P = pressure in atm
V = molar volume in L/gmole
T = temperature in K
R = gas constant (0.08206 atm-L/gmole-K)
TC = the critical temperature (405.5 K for ammonia)
PC = the critical pressure (111.3 atm for ammonia)
PVAP= vapor pressure (6.2 atm at Tr = 0.7 for ammonia)

Use MATLAB to answer the following questions:
(a) Calculate the molar volume and compressibility factor Z for gaseous ammonia at a

pressure P = 56 atm and a temperature T = 450 K.
(b) Repeat the calculations for the following reduced pressures: Pr = 1, 2, 4, 10, and 20.

Workshop 4: Solving an ODE
Write a MATLAB script file to solve the following
4th-order ODE using ode23:

d4y/dt4 = y + 7.5sin(2t) + 16sin2t – 14cos2t + t3

s.t. y(0) = 0, dy(0)/dt = 3, d2y(0)/dt2 = 6, d3y(0)/dt3 = –8

The above ODE has an analytical solution of:

y(t) = c1et + c2sin(2t) – c3cos2(t) + c4t3

88

Workshop 4: Solving an ODE (Cont’d)
Make a plot of the numerical solution (y versus t) from MATLAB.

Then, compare your MATLAB solution with the analytical solution

below by reporting the relative % differences. Run the simulation

from t = 0 to t =1 with an increment of 0.1. Include 6 decimal

places in reporting all your numbers.

Note: You must do all your work in MATLAB, which includes
determining the constants c1, c2, c3, and c4 in the analytical solution.

89

Workshop 5: Newton’s Method
Consider the following system of nonlinear equations:

f1(x, y, z) = xyz – x2 + y2 – 1.34 = 0

f2(x, y, z) = xy – z2 – 0.09 = 0

f3(x, y, z) = ex – ey + z – 0.41 = 0

Write a MATLAB program to do the following:

(a) Solve for the roots of the above equations using Newton’s

method. Use an initial guess of (x, y, z) = (1, 1, 1). Accept

the solution only when | f1 |, | f2 |, and | f3 |  10-3.

90

Workshop 5: Newton’s Method (Cont’d)
(b) Solve the equations again using the function solve in MATLAB.

(c) Compare the % relative errors between the values of x, y, and z
obtained from Newton and from MATLAB. Report the errors
with 5 decimal places.

Recall that the iterative formula for Newton’s method is:
xk+1 = xk – J -1(xk) * f(xk)
where J -1 is the inverse of the Jacobian matrix, J

f1/x1 f1/x2 … f1/xn

J = f2/x1 f2/x2 … f2/xn

…………………
fn/x1 fn/x2 … fn/xn 91

