Answer Sheet for CHE654 Homework Set #1 (100 points)

<u>Note</u>: For all problems, submit a copy of your process flow diagram and a copy of your input summary of the process.

1. (20 points) Mass Balances and Constraints with Elementary Modules, I

(a) Draw the flowsheet in terms of elementary modules

(b) Is the problem constrained? Circle: Yes or No
How many standard inputs are missing?
How many constraints are present?
List the missing standard input:
(c) Selectivity of Reaction 1: $A + B \rightarrow C =$
Fractional conversion of reaction 3: 2C \rightarrow D + F =
Pure component E feed flow rate into absorber = lbmol/hr
Mole-recovery of light key in column overhead =
Total molar flow rate of streams:
S4: lbmol/hr; S7: lbmol/hr; S8: lbmol/hr

4. (20 points) Mass Balances and Constraints with Elementary Modules, IV

Number of missing standard input = _____

Number of constraints = _____

Check one: The problem is: [] under-specified [] fully specified [] over-specified

Streams	Compone			
	А	В	С	Total Flow
S1				
S2				
S3	50			
S4				160
S5				
S6				

5. (20 points) Mass Balances and Constraints with Elementary Modules, V

Number of missing standard input = _____

Number of constraints = _____

Check one: The problem is: [] under-specified [] fully specified [] over-specified

Streams	Component Flow Rates (lbmol/hr)			
	А	В	С	Total Flow
S 1		0	0	
S2				
S3				
S4				
S5				
S6				150.00

9. (10 points) Determination of Tear Streams and Computation Order, II

The minimum number of tear streams =	
The tear stream locations are:	
A complete computational sequence:	
10. (10 points) Determination of Tear Streams and Computation Order, III	
The tear streams are:	
Computational order:	

11. (20 points) Finding Tear Streams and Computational Sequence Using A+

(a) Output from A+ Control Panel showing tear streams and computational sequence

(b) Write down 3 exclusive tear sets from Forder-Hutchison's loop analysis